Polynomial-sized semidefinite representations of derivative relaxations of spectrahedral cones

نویسندگان

  • James Saunderson
  • Pablo A. Parrilo
چکیده

We give explicit polynomial-sized (in n and k) semidefinite representations of the hyperbolicity cones associated with the elementary symmetric polynomials of degree k in n variables. These convex cones form a family of non-polyhedral outer approximations of the non-negative orthant that preserve low-dimensional faces while successively discarding high-dimensional faces. More generally we construct explicit semidefinite representations (polynomial-sized in k,m, and n) of the hyperbolicity cones associated with kth directional derivatives of polynomials of the form p(x) = det( ∑n i=1Aixi) where the Ai are m×m symmetric matrices. These convex cones form an analogous family of outer approximations to any spectrahedral cone. Our representations allow us to use semidefinite programming to solve the linear cone programs associated with these convex cones as well as their (less well understood) dual cones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential lower bounds on spectrahedral representations of hyperbolicity cones

The Generalized Lax Conjecture asks whether every hyperbolicity cone is a section of a semidefinite cone of sufficiently high dimension. We prove that the space of hyperbolicity cones of hyperbolic polynomials of degree d in n variables contains (n/d) pairwise distant cones in the Hausdorff metric, and therefore that any semidefinite representation of such polynomials must have dimension at lea...

متن کامل

Hyperbolic Polynomials and Generalized Clifford Algebras

We consider the problem of realizing hyperbolicity cones as spectrahedra, i.e. as linear slices of cones of positive semidefinite matrices. The generalized Lax conjecture states that this is always possible. We use generalized Clifford algebras for a new approach to the problem. Our main result is that if −1 is not a sum of hermitian squares in the Clifford algebra of a hyperbolic polynomial, t...

متن کامل

Semidenite representations with applications in estimation and inference

Semidefinite optimization problems are an expressive family of convex optimization problems that can be solved efficiently. We develop semidefinite optimization-based formulations and approximations for a number of families of optimization problems, including problems arising in spacecraft attitude estimation and in learning tree-structured statistical models. We construct explicit exact reform...

متن کامل

Semidefinite programming — an introduction

Interior point methods can be extended to a number of cones (self-dual homogeneous cones) • Rn (linear programming) • vectorized symmetric matrices over real numbers (semidefinite programming) • vectorized Hermitian matrices over complex numbers • vectorized Hermitian matrices over quaternions • vectorized Hermitian 3×3 matrices over octonions Grötschel, Lovász and Schrijver [3]: semidefinite p...

متن کامل

An Extension of Sums of Squares Relaxations to Polynomial Optimization Problems Over Symmetric Cones

This paper is based on a recent work by Kojima which extended sums of squares relaxations of polynomial optimization problems to polynomial semidefinite programs. Let E and E+ be a finite dimensional real vector space and a symmetric cone embedded in E ; examples of E and E+ include a pair of the N -dimensional Euclidean space and its nonnegative orthant, a pair of the N -dimensional Euclidean ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 153  شماره 

صفحات  -

تاریخ انتشار 2015